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We study the fundamental problem of evaluating a function by sequen-
tially selecting a subset of variables whose values uniquely identify the func-
tion’s value. This basic problem arises in several domains of computer sci-
ence, e.g., Automatic diagnosis, AI, applied Game Theory, Data Base Query
optimization, just to mention a few.

A function f over a set of variables V must be computed and, for many
inputs of the domain, not all the variables need to be read in order to
determine the value of f on those inputs. A deterministic algorithm for this
problem adaptively reads the value of the variables of f until the values read
so far uniquely determine the value of f . Classically, each read operation
is assumed to incur a unit-cost and the number of variables read (for the
worst case input setting) is the measure used to analyze the efficiency of
the algorithms. However, it is well known that a large class of functions of
interest enjoy the evasiveness property, i.e., in the worst case any determini-
stic algorithm must read all the variables. Such classes show that the worst
case analysis is not generally able to distinguish among the performances
of different algorithms for the function evaluation problem. Other metrics
that employ probabilistic and competitive analysis have been investigated
in the literature (see, e.g., [12,11,2].)

Following Charikar et. al. [2], here we address the variant of the func-
tion evaluation problem where different variables can incur different reading
costs and competitive analysis is employed to measure the performance of
the evaluation algorithm.

Competitive Function Evaluation. A function f over a set of variables
V = {x1, x2, . . . , xn} has to be evaluated for a fixed but unknown assign-
ment σ, i.e., a choice of the values for the variables of V . Each variable
xi has an associated non-negative cost c(xi) which is the cost incurred to
probe xi, i.e., to read its value xi(σ). For each i = 1, . . . , n, the cost c(xi) is
fixed and known beforehand. The goal is to adaptively identify and probe a
minimum cost set of variables U ⊆ V whose values uniquely determine the
value of f for the given assignment, regardless of the values of the variables
not probed. The cost c(U) of U is the sum of the costs of the variables
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it contains, i.e., c(U) =
∑

x∈U c(x). We use f(σ) to denote the value of f
w.r.t. σ, i.e., f(σ) = f(x1(σ), . . . , xn(σ)).

A set of variables U ⊆ V is a proof with respect to a given assignment σ
for the variables of V if the value f(σ) is determined by the values that σ
assigns to the variables of U regardless of the values assigned to the other
variables.

An evaluation algorithm A for f is a decision tree, that is, a rule to
adaptively read the variables in V until the set of variables read so far is
a proof for the value of f . The cost of algorithm A for an assignment σ is
the total cost incurred by A to evaluate f under the assignment σ. Given
a cost function c(·), we let cf

A(σ) denote the cost of the algorithm A for
an assignment σ and cf (σ) the cost of the cheapest proof for f under the
assignment σ. We say that A is ρ-competitive if cf

A(σ) ≤ ρcf (σ), for every
possible assignment σ. We use γAc (f) to denote the competitive ratio of
A, that is, the minimum ρ for which A is ρ-competitive. The best possible
competitive ratio for any deterministic algorithm, then, is γf

c = minA γAc (f),
where the minimum is computed over all possible deterministic algorithms
A.

With the aim of evaluating the dependence of the competitive ratio on
the structure of f , one defines the extremal competitive ratio γA(f) of an
algorithm A as γA(f) = maxc γAc (f). The best possible extremal competi-
tive ratio for any deterministic algorithm, then, is γ(f) = minA γA(f). This
last measure is meant to capture the structural complexity of f independent
of a particular cost assignment and algorithm.

Our Contributions. We present efficient algorithms for the above mo-
dels that achieve in general optimal and always very high competitiveness
for several classes of functions that have been widely studied in the area.
We focus on the class of monotone Boolean function and particularly on
the evasive monotone Boolean functions, for which any deterministic eval-
uation algorithm must read all the variables in the worst case. AND/OR
trees and threshold tree functions constitute two important representative
classes of evasive monotone Boolean functions and they will have a special
place in our investigation. The former are tree circuits with both AND and
OR gates and with each leaf corresponding to a distinct variable. Threshold
trees are a generalization of AND/OR trees where AND and OR gates are
replaced by threshold gates. We also consider a non trivial class of mono-
tone Boolean functions that are non-evasive. Our main contributions are
as follows (see also [3,4,5]): 1. A simple polynomial time algorithm that
achieves optimal competitive ratio γf

c for every function f that can be rep-
resentable by threshold trees. 2. A Linear Programming (based) approach
that allows the design of polynomial time algorithms with competitiveness
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γ(f) (or close to it) for many classes of functions.
In particular, by employing the Linear Programming (based) approach

we provide: (a) a (2γ(f)−
√

γ(f))-competitive polytime algorithm for ar-
bitrary monotone Boolean functions. Here, we assume the existence of an
oracle that returns f(σ) in polytime, for every possible assignment σ. (b) a
1.618γ(f)-competitive algorithm for the class of strongly evasive monotone
Boolean functions. A function f is strongly evasive if and only if f and
all of its restrictions are evasive functions. (c) a γ(f)-competitive polytime
algorithm for the class of monotone Boolean functions where every variable
appears in at most 3 minterms. The interest of this result is that it is opti-
mal in terms of extremal competitiveness for a non-trivial class of monotone
Boolean functions that are not included in the class of evasive monotone
Boolean functions.

Other Models. Other measures for analyzing the performance of func-
tion evaluation algorithms have also been considered in the literature. Both
deterministic and randomized algorithms have been investigated. For the
former, worst case analysis and probabilistic analysis have been employed to
understand the behavior of the proposed algorithms (see [1,11,10,7,8,12,6,9]
and references therein quoted.) One can see all these results as different
attempts to capture the complexity of evaluating classes of important func-
tions. It is then remarkable that as opposed to the state of the art when
the above measures were used, we are able to provide optimal algorithms
in terms of the competitive ratio for important classes of functions.
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