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LOCAL ADDITIVE MEASURES ON PERFECT FUZZY
STRUCTURES

LAVINIA CIUNGU

In this paper we define and study the local states on perfect pseudo-MV alge-
bras. The main result consists of proving that there is a one to one correspondence
between the local states on strong perfect pseudo-MV algebras and the states on
`-groups. As a generalization of these states, we introduce the notion of a local
additive measure on a perfect pseudo-MTL algebra and we prove that, in some
conditions, a local additive measure can be extended to a Riečan state. It is given
a necessary and sufficient condition for a local additive measure on a perfect pseudo-
MTL algebra to be a Bosbach state.

A pseudo-MV algebra (A,⊕,− ,∼ , 0, 1) is called local if it has a unique maximal
ideal. A local pseudo-MV algebra A is called perfect if for any x ∈ A, ord(x) <∞
implies ord(x−) =∞.
The intersection of all maximal ideals of a pseudo-MV algebra is denoted by Rad(A)
and it is called the radical of A.
A local pseudo-MV algebra A is perfect iff A = Rad(A) ∪Rad(A)∗.
We denote by Id(a) the ideal generated by the element a ∈ A.
If A is a pseudo-MV algebra, we denote D(A) = {x ∈ A|ord(x) =∞} and D(A)∗ =
{x ∈ A|x ≥ y− for some y ∈ D(A)}.
We also have D(A)∗ = {x ∈ A|x ≥ y∼ for some y ∈ D(A)}.

Definition
If A is a perfect pseudo-MV algebra, then a local state on A is a function s :
Rad(A)→ R+ satisfying the conditions:
(ls1) s(0) = 0;
(ls2) s(x⊕ y) = s(x) + s(y) for all x, y ∈ Rad(A).
If a ∈ A such that Rad(A) = Id(a) then a local state s on A is normalized if
s(a) = 1. A local state s is faithful if s(x) 6= 0 for all x ∈ Rad(A), x 6= 0.

Definition
A perfect pseudo-MV algebra A is called strong perfect iff x− = x∼ for all x ∈ A.

Proposition
Let A be a perfect pseudo-MV algebra and s a local state on A. Then, for all
x, y ∈ Rad(A) the following hold:
(1) if x ≤ y then s(y)− s(x) = s(y ∗ x−) = s(x∼ ∗ y);
(2) s(x ∨ y) + s(x ∧ y) = s(x) + s(y);
(3) s(x⊕ y) + s(y ∗ x) = s(x) + s(y).

Theorem
If A is a strong perfect pseudo-MV algebra and G an `-group such that G = D(A),
then there is a one to one correspondence between the local states on A and the
states on G. Under this correspondence, if Rad(A) = Id(a) and u = [a, 0] is a
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strong unit of G, the normalized local states on A are mapped onto normalized
states on G.

If (A,∧,∨, ∗,→,∼>, 0, 1) is a pseudo-MTL algebra, we will denote:
D(A) = {x ∈ A | ord(x) =∞} and D(A)∗ = {x ∈ A | ord(x) <∞}.
The intersection of all maximal filters of a pseudo-MTL algebra A is called the rad-
ical of A and it is denoted by Rad(A). The pseudo-MTL algebra A is called local if
it has a unique maximal filter and in this case Rad(A) = D(A). A is called perfect
if it is good and for any x ∈ A, ord(x) <∞ iff ord(x−) =∞ iff ord(x∼) =∞ (see
[1]).
If A is a perfect pseudo-MTL algebra, then A = Rad(A) ∪Rad(A)∗.
We define a binary operation ⊕ on a pseudo-MTL algebra A by
x⊕ y := (y∼ ∗ x∼)− for all x, y ∈ A.
If A is a good pseudo-MTL algebra we say that two elements x, y ∈ A are orthogo-
nals, denoted x ⊥ y, if x−∼ ≤ y∼.

Lemma
Let A be a perfect pseudo-MTL algebra.
(1) if x, y ∈ Rad(A)∗, then x and y are orthogonals;
(2) if x, y ∈ Rad(A), then x and y are not orthogonals.

Let A be a pseudo-MTL algebra and X ⊆ A \ {0}. An element x ∈ A is called
X-zero divisor if there is y1, y2 ∈ X sucht that x ∗ y1 = y2 ∗ x = 0. If 0 is the only
Rad(A)−zero divisor of A, then A is called relative free of zero elements.

Definition
A Bosbach state on a pseudo-MTL algebra A is a function s : A→ [0, 1] such that
the following conditions hold for all x, y ∈ A:
(bs1) s(x) + s(x→ y) = s(y) + s(y → x);
(bs2) s(x) + s(x ∼> y) = s(y) + s(y ∼> x);
(bs3) s(0) = 0 and s(1) = 1.

If x and y are two orthogonal elements of a pseudo-MTL algebra A, then we
define a partial operation ” + ” on A by x+ y := x⊕ y.

Definition
Let A be a good pseudo-MTL algebra. A Riečan state or additive measure on A is
a function s : A −→ [0, 1] such that the following conditions hold for all x, y ∈ A:
(rs1) if x⊥ y, then s(x+ y) = s(x) + s(y);
(rs2) s(1) = 1.

It was proved in [2] that every Bosbach state on a pseudo-MTL algebra A is a
Riečan state, but the converse is not true. Moreover, we proved in [3] that every
perfect pseudo-MTL algebra admits at least a Bosbach state.
According to the previous Lemma, for all x, y ∈ Rad(A)∗ we have x ⊥ y, so the
operation + is defined for all elements of Rad(A)∗.

Definition
If A is a perfect pseudo-MTL algebra, then a local additive measure on A is a
function s : Rad(A)∗ −→ [0, 1] satisfying the conditions:
(ls1) s(x+ y) = s(x) + s(y) for all x, y ∈ Rad(A)∗;
(ls2) s(0) = 0.

Examples
Let A be a perfect pseudo-MTL algebra. Then:
(1) The function s : Rad(A)∗ −→ [0, 1], s(x) = 0 for all x ∈ Rad(A)∗ is a local
additive measure on A;
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(2) If S is a Riečan state on A, then s = S/Rad(A)∗ is a local additive measure on
A.

According to the previous Lemma it follows that the function s is well defined,
i. e. x⊕ y ∈ Rad(A)∗ for all x, y ∈ Rad(A)∗.

Proposition
If s is a local additive measure on the perfect pseudo-MTL algebra A, then the
following hold for all x, y ∈ Rad(A)∗:
(1) s(x−∼) = s(x);
(2) s(x) + s(y−−) = s((y− ∗ x∼)−) and s(x) + s(y∼∼) = s((y∼ ∗ x−)∼);
(3) s(x−−) + s((x∼ ∗ x−)∼) = s(x∼∼) + s((x− ∗ x∼)−);
(4) s(x) ≤ s((x− ∗ x∼)−) and s(x) ≤ s((x∼ ∗ x−)∼).

If s is a local additive measure on the perfect pseudo-MTL algebra A, then
we define the function s∗ : Rad(A) −→ [0, 1] by s∗(x) = 1 − s(x− ⊕ x∼) for all
x ∈ Rad(A).

Proposition
If s is a local additive measure on the perfect pseudo-MTL algebra A, then the
following hold for all x, y ∈ Rad(A):
(1) s∗(1) = 1;
(2) s∗(x−∼) = s∗(x);
(3) s∗(x⊕ y) = 1− [s(y− ∗ x−) + s(y∼ ∗ x∼)];
(4) 1 + s∗(x) ≤ s∗(x−−) + s∗(x∼∼);
(5) s∗(x⊕ y) = s∗(x) + s∗(y) iff s(y− ∗ x−) = s(y∼ ∗ x∼) = 0;
(6) min{s(x−), s(x∼)} ≤ 1/2.

Theorem (Extension theorem)
Let A be a perfect pseudo-MTL algebra relative free of zero divisors. Then every
local additive measure on A can be extended to a Riečan state on A.

Theorem
Let A be a perfect pseudo-MTL algebra relative free of zero divisors. The extension
of a local additive measure s on A is a Bosbach state on A if and only if s(x) = 0
for all x ∈ Rad(A)∗.
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