ManyVal '08 - Applications of Topological Dualities to Measure Theory in Algebraic Many-Valued Logic, May 19–21, 2008, University of Milan, Milan, Italy

LOCAL ADDITIVE MEASURES ON PERFECT FUZZY STRUCTURES

LAVINIA CIUNGU

In this paper we define and study the local states on perfect pseudo-MV algebras. The main result consists of proving that there is a one to one correspondence between the local states on strong perfect pseudo-MV algebras and the states on ℓ -groups. As a generalization of these states, we introduce the notion of a local additive measure on a perfect pseudo-MTL algebra and we prove that, in some conditions, a local additive measure can be extended to a Riečan state. It is given a necessary and sufficient condition for a local additive measure on a perfect pseudo-MTL algebra to be a Bosbach state.

A pseudo-MV algebra $(A, \oplus, \bar{}, \sim, 0, 1)$ is called *local* if it has a unique maximal ideal. A local pseudo-MV algebra A is called *perfect* if for any $x \in A$, $ord(x) < \infty$ implies $ord(x^{-}) = \infty$.

The intersection of all maximal ideals of a pseudo-MV algebra is denoted by Rad(A) and it is called the *radical* of A.

A local pseudo-MV algebra A is perfect iff $A = Rad(A) \cup Rad(A)^*$.

We denote by Id(a) the ideal generated by the element $a \in A$.

If A is a pseudo-MV algebra, we denote $D(A) = \{x \in A | ord(x) = \infty\}$ and $D(A)^* = \{x \in A | x \ge y^- \text{ for some } y \in D(A)\}.$

We also have $D(A)^* = \{x \in A | x \ge y^{\sim} \text{ for some } y \in D(A)\}.$

Definition

If A is a perfect pseudo-MV algebra, then a *local state* on A is a function $s : Rad(A) \to \mathbb{R}_+$ satisfying the conditions:

$$(ls_1) \ s(0) = 0;$$

 $(ls_2) \ s(x \oplus y) = s(x) + s(y)$ for all $x, y \in Rad(A)$.

If $a \in A$ such that Rad(A) = Id(a) then a local state s on A is normalized if s(a) = 1. A local state s is faithful if $s(x) \neq 0$ for all $x \in Rad(A), x \neq 0$.

Definition

A perfect pseudo-MV algebra A is called *strong perfect* iff $x^- = x^{\sim}$ for all $x \in A$. **Proposition**

Let A be a perfect pseudo-MV algebra and s a local state on A. Then, for all $x, y \in Rad(A)$ the following hold:

(1) if $x \le y$ then $s(y) - s(x) = s(y * x^{-}) = s(x^{\sim} * y);$

(2)
$$s(x \lor y) + s(x \land y) = s(x) + s(y);$$

(3) $s(x \oplus y) + s(y * x) = s(x) + s(y)$.

Theorem

If A is a strong perfect pseudo-MV algebra and G an ℓ -group such that $G = \mathcal{D}(A)$, then there is a one to one correspondence between the local states on A and the states on G. Under this correspondence, if Rad(A) = Id(a) and u = [a, 0] is a

LAVINIA CIUNGU

strong unit of G, the normalized local states on A are mapped onto normalized states on G.

If $(A, \land, \lor, *, \rightarrow, \sim >, 0, 1)$ is a pseudo-MTL algebra, we will denote:

 $D(A) = \{x \in A \mid ord(x) = \infty\} \text{ and } D(A)^* = \{x \in A \mid ord(x) < \infty\}.$

The intersection of all maximal filters of a pseudo-MTL algebra A is called the *radical* of A and it is denoted by Rad(A). The pseudo-MTL algebra A is called *local* if it has a unique maximal filter and in this case Rad(A) = D(A). A is called *perfect* if it is good and for any $x \in A$, $ord(x) < \infty$ iff $ord(x^-) = \infty$ iff $ord(x^{\sim}) = \infty$ (see [1]).

If A is a perfect pseudo-MTL algebra, then $A = Rad(A) \cup Rad(A)^*$.

We define a binary operation \oplus on a pseudo-MTL algebra A by

 $x \oplus y := (y^{\sim} * x^{\sim})^{-}$ for all $x, y \in A$.

If A is a good pseudo-MTL algebra we say that two elements $x, y \in A$ are orthogonals, denoted $x \perp y$, if $x^{-\sim} \leq y^{\sim}$.

Lemma

Let A be a perfect pseudo-MTL algebra.

(1) if $x, y \in Rad(A)^*$, then x and y are orthogonals;

(2) if $x, y \in Rad(A)$, then x and y are not orthogonals.

Let A be a pseudo-MTL algebra and $X \subseteq A \setminus \{0\}$. An element $x \in A$ is called X-zero divisor if there is $y_1, y_2 \in X$ such that $x * y_1 = y_2 * x = 0$. If 0 is the only Rad(A)-zero divisor of A, then A is called *relative free of zero elements*.

Definition

A Bosbach state on a pseudo-MTL algebra A is a function $s : A \to [0, 1]$ such that the following conditions hold for all $x, y \in A$:

 $(bs_1) \ s(x) + s(x \to y) = s(y) + s(y \to x);$

 $(bs_2) \ s(x) + s(x \sim y) = s(y) + s(y \sim x);$

 $(bs_3) \ s(0) = 0 \text{ and } s(1) = 1.$

If x and y are two orthogonal elements of a pseudo-MTL algebra A, then we define a partial operation "+" on A by $x + y := x \oplus y$.

Definition

Let A be a good pseudo-MTL algebra. A Riečan state or additive measure on A is a function $s: A \longrightarrow [0, 1]$ such that the following conditions hold for all $x, y \in A$: (rs_1) if $x \perp y$, then s(x + y) = s(x) + s(y); $(rs_2) \ s(1) = 1$.

It was proved in [2] that every Bosbach state on a pseudo-MTL algebra A is a Riečan state, but the converse is not true. Moreover, we proved in [3] that every perfect pseudo-MTL algebra admits at least a Bosbach state.

According to the previous Lemma, for all $x, y \in Rad(A)^*$ we have $x \perp y$, so the operation + is defined for all elements of $Rad(A)^*$.

Definition

If A is a perfect pseudo-MTL algebra, then a *local additive measure* on A is a function $s : Rad(A)^* \longrightarrow [0, 1]$ satisfying the conditions:

 $(ls_1) \ s(x+y) = s(x) + s(y)$ for all $x, y \in Rad(A)^*$; $(ls_2) \ s(0) = 0.$

$\mathbf{Examples}$

Let A be a perfect pseudo-MTL algebra. Then:

(1) The function $s : Rad(A)^* \longrightarrow [0,1]$, s(x) = 0 for all $x \in Rad(A)^*$ is a local additive measure on A;

(2) If S is a Riečan state on A, then $s = S/Rad(A)^*$ is a local additive measure on A.

According to the previous Lemma it follows that the function s is well defined, i. e. $x \oplus y \in Rad(A)^*$ for all $x, y \in Rad(A)^*$.

Proposition

If s is a local additive measure on the perfect pseudo-MTL algebra A, then the following hold for all $x, y \in Rad(A)^*$:

(1)
$$s(x^{\sim}) = s(x);$$

(2) $s(x) + s(y^{-}) = s((y^{-} * x^{\sim})^{-})$ and $s(x) + s(y^{\sim}) = s((y^{\sim} * x^{-})^{\sim});$

(3) $s(x^{--}) + s((x^{\sim} * x^{-})^{\sim}) = s(x^{\sim}) + s((x^{--} * x^{\sim})^{--});$

(4) $s(x) \le s((x^- * x^{\sim})^-)$ and $s(x) \le s((x^{\sim} * x^-)^{\sim})$.

If s is a local additive measure on the perfect pseudo-MTL algebra A, then we define the function $s^* : Rad(A) \longrightarrow [0,1]$ by $s^*(x) = 1 - s(x^- \oplus x^{\sim})$ for all $x \in Rad(A)$.

Proposition

If s is a local additive measure on the perfect pseudo-MTL algebra A, then the following hold for all $x, y \in Rad(A)$:

- (1) $s^*(1) = 1;$
- (2) $s^*(x^{-\sim}) = s^*(x);$
- (3) $s^*(x \oplus y) = 1 [s(y^- * x^-) + s(y^- * x^-)];$
- (4) $1 + s^*(x) \le s^*(x^{--}) + s^*(x^{--});$
- (5) $s^*(x \oplus y) = s^*(x) + s^*(y)$ iff $s(y^- * x^-) = s(y^- * x^-) = 0;$
- (6) $\min\{s(x^{-}), s(x^{\sim})\} \le 1/2.$
- **Theorem** (Extension theorem)

Let A be a perfect pseudo-MTL algebra relative free of zero divisors. Then every local additive measure on A can be extended to a Riečan state on A.

Theorem

Let A be a perfect pseudo-MTL algebra relative free of zero divisors. The extension of a local additive measure s on A is a Bosbach state on A if and only if s(x) = 0 for all $x \in Rad(A)^*$.

References

 L. C. Ciungu, Some classes of pseudo-MTL algebras, Bull. Math. Soc. Sci. Math. Roumanie 3(2007), 223-247.

[2] L. C. Ciungu, *Bosbach and Riečan states on residuated lattices*, Journal of Applied Functional Analysis, to appear.

[3] L. C. Ciungu, On the existence of states on fuzzy structures, Southeast Asian Bulletin of Mathematics, to appear.

STATE UNIVERSITY OF NEW YORK AT BUFFALO *E-mail address:* lcciungu@buffalo.edu