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Recently several authors paid attention to the extension of the classical notion of
probability developed in the Boolean framerwork to more general algebraic struc-
tures. An important example is represented by the notion of states of MV-algebras
[1,2,3]. On the other hand algebraic structures closely related to fuzzy logic consti-
tute also an useful tool in investigating probabilistic aspects of systems associated
to quantum computation [4]. The present work follows the latter stream.

A quantum system in a pure state is described by a unit vector in a Hilbert
space. In the Dirac notation a pure state is denoted by |ϕ〉. A quantum bit or qbit,
the fundamental concept of quantum computation is a pure state in the Hilbert
space C2. The standard orthonormal base {|0〉, |1〉} of C2 is called the logical basis.
Thus a qbit |ϕ〉 may be written as a linear superposition of the basis vectors with
complex coefficients |ψ〉 = c0|0〉+ c1|1〉 with |c0|2 + |c1|2 = 1. Quantum mechanics
reads out the information content of a pure state via the Born rule. By these means,
we consider the probability value assigned to a qbit as follows: p(|ψ〉) = |c1|2.

The quantum states of interest for quantum computation lie in the tensor product
⊗nC2 = C2 ⊗ C2 ⊗ . . . ⊗ C2. The space ⊗nC is a 2n-dimensional complex space.
We choose a special basis for ⊗nC which is called the 2n-computational basis. More
precisely, it consists of the 2n orthogonal states |ι〉, 0 ≤ ι ≤ 2n where ι is in binary
representation and ι can be seen as tensor product of states |ι〉 = |ι1〉⊗|ι2〉⊗. . .⊗|ιn〉
where ιj ∈ {0, 1}. A pure state |ψ〉 ∈ ⊗nC is generally a superposition of the basis
vectors |ψ〉 =

∑2n

ι=1 cι|ι〉 with
∑2n

ι=1 |cι|2 = 1.
In general, a quantum system is not in a pure state. This may be attributed to

the fact that the systems are not isolated from the rest of the universe, so it does
not have a well defined pure state. We say that the system is in a mixed state which
is described by a density operator. A density operator is a Hermitian (i.e ρ† = ρ)
positive trace class operator on a 2n-dimensional complex Hilbert space with trace
trρ = 1. A pure state |ψ〉 can be represented by the operator ρ = |ψ〉〈ψ|, where
〈ψ| = (|ψ〉)†. As a particular case, with each vector of the logical base of C2 we
consider the very important density operators P0 = |0〉〈0| and P1 = |1〉〈1| that
represent,the truth-property and the falsity-property respectively.

One can represent an arbitrary density operator ρ for n-qbits in terms of tensor
products of the Pauli matrices:

σ0 = I σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
in the following way: ρ = 1

2n

∑
µ1...µn

Pµ1...µn(σµ1⊗. . .⊗σµn) where µi ∈ {0, x, y, z}
for each i = 1 . . . n and |Pµ1...µn | ≤ 1. We denote by D(⊗nC2) the set of all density
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operators of ⊗nC2. Moreover, we can identify, in each space D(⊗nC2), two special
operators P (n)

0 = 1
2n I

n−1 ⊗ P0 and P
(n)
1 = 1

2n I
n−1 ⊗ P1 that represent, in this

framework, the truth-property and the falsity-property. By applying the Born rule,
we obtain the probability value corresponding to the fact that the physical system
in the state ρ ∈ D(⊗nC2) satisfies the truth-property P

(n)
1 as follows: p(ρ) =

Tr(P (n)
1 ρ). In the particular case that ρ = |ψ〉〈ψ|, where |ψ〉 = c0|0〉 + c1|1〉 we

obtain that p(ρ) = |c1|2.
In the simplest representation of the work of a quantum computer, the state of

the system is a pure state and the operations are represented by unitary operators.
These operations are identified with the quantum gates. But when the system is
open because it is either coupled to an environment or is being subject to a mea-
surement, in general its time evolution is irreversible. A general model of quantum
computation which takes into account this situation is captured mathematically by
means of quantum operations as quantum gates [5], acting on density operators.

In general, let M be a finite dimensional complex Hilbert space and L(M) be
the vectorial space of all linear operators on M . A quantum operation is a linear
operator E : L(N)→ L(M) representable as

E(ρ) =
∑
i

AiρA
†
i

for some set of operators {Ai} such that
∑
iA
†
iAi = I. It can be seen that quantum

operations send density operators to density operators.

In the present work we provide a probabilistic version of the well known Stone
Weierstrass theorem applied to quantum operations, which will allow us to regard
any continuous t-norm on [0, 1] as a quantum operation. More precisely, let f be
a continuous t-norm. Then, for each ε > 0, there exists M > 0 and a quantum
operation E such that, for any pair of density operators σ1, σ2,

|Mp(E(σ1 ⊗ σ2))− f(p(σ1), p(σ2)) |≤ ε
In this way any continuous t-norm can be regarded as a quantum gate.
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