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TOWARDS COALITION GAMES ON MV-ALGEBRAS

TOMAS KROUPA

Coalition game theory originated from the work [10] of von Neumann and Mor-
genstern. Further development of this theory led to many generalizations such as
games with infinitely many players [2] of Aumann and Shapley or Aubin’s games
with fuzzy coalitions [1,5]. A coalition game can be determined by a set of players,
a set of coalitions that can be formed by the players, and a mapping assigning to
every coalition its profit resulting from the cooperation among the players consti-
tuting the coalition. One of the basic question investigated in this context is that
of the existence of a certain operator called value, which embodies the idea of a
“fair” distribution of the total profit among the individual players.

The aim of this contribution is to make first steps towards the study of coalition
games in the MV-algebraic framework. It will be shown that the apparatus of
MV-algebras [6] is rich enough to deal with a very large class of coalition games
including both games with infitely many players and games with fuzzy coalitions
simultaneously. Let (M, ®,®,—,0,1) be a semisimple MV-algebra. We assume
that M is the set of plausible coalitions. By the representation theorem from [4]
every A € M can be identified with a unique [0, 1]-valued function on some compact
Hausdorff space X. In this context an element of X is called a player and every
A € M is called a coalition. Note that a player x € X is allowed to participate
in a coalition A € M only partially in a degree given by A(z). A game is a real
function v on M with v(0) = 0. For every A € M the number v(A) can be viewed
as the worth or the profit of the coalition A that is ensured by the members of A
by acting towards a common goal of the coalition A.

We say that a real function m on M is a finitely additive measure (cf. [5,8,3])
when m(0) = 0 and for every A, B € M such that A ® B = 0, we have m(A &
B) = m(A) + m(B). Let M be a o-complete MV-algebra. A measure on M is a
finitely additive measure on M such that m(A) = limm(A,,) whenever A =\/ A,,
where A, is a nondecreasing sequence of elements of M. By FBV s we denote
the Banach algebra of all games on M which are of bounded variation in the
sense of [5,Definition 15.3] and by FBA we denote its closed linear subspace of
all finitely additive measures on M belonging to FBV 5. If « is an MV-algebraic
automorphism of M, then it induces a linear mapping a, : FBVy; — FBV :
v — a,v given by a,v(A) = v(ad), for every A € M. According to [7] every
automorphism of a semisimple MV-algebra also gives rise to a homeomorphism of
the compact Hausdorff space X of all players. In particular, this result enables to
build the correspondence between the automorphisms of M and permutations in
the sense of [5,18.1]. A linear subspace Q of FBV , is called symmetric if a,v € Q
for every v € Q and every automorphism « of mathcalM, and a linear operator
Q — FBA 4 is positive when it maps monotone games in Q to monotone finitely
additive measures in FBAj. With these definitions in mind we introduce the
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following notion capturing the concept of a “fair” distribution of worth in the game
v, which involves some commonly accepted axioms of rationality (see [9,2,5]).

Definition. Let M be a semisimple MV-algebra and Q be a symmetric subspace
of FBV (. An Aumann-Shapley value on Q is a positive linear operator ¢ : Q —
FBA A : v — v, which satisfies the following conditions:

(1) Symmetry: if « is an automorphism of M, then for every v € Q

p(av) = a.(pv).
(2) Efficiency: ¢v(1) = v(1), for every v € Q.

In general, Aumann-Shapley value need not exist on the whole space FBV 5 pro-
vided M is an arbitrary semisimple MV-algebra. In case that M is a o-complete
MV-algebra, however, the existence of Aumann-Shapley value can be proved for
a large class of games. By pFNA,, we denote the closed linear span of all nat-
ural powers of monotone nonatomic measures on M (cf. [5,Definition 16.2]). A
nonatomic vector measure is a vector m = (my,...,m,) of nonatomic measures
mi,...,my. The following result is based on Theorem 18.4 in [5].

Theorem. If M is a o-complete MV-algebra, then there exists an Aumann-
Shapley value ¢ on pFNA ,, such that ¢ is continuous and has norm 1. Let m be a
nonatomic vector measure on M and f be a continuously differentiable function of
n real variables on the range of m with f(0) = 0. Then we have for every A € M,

o(f om)(4) = / fun(ay (b0(1)) i,

where the integral on the right-hand side above is Riemann and fu(4)(tm(1)) is
the derivative of f at tm(1) in the direction m(A).

The question of interest is the existence and the uniqueness of Aumann-Shapley
value on classes of games on a semisimple MV-algebra, which is not necessarily
o-complete.
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