ManyVal '08 - Applications of Topological Dualities to Measure Theory in Algebraic Many-Valued Logic, May 19–21, 2008, University of Milan, Milan, Italy

Coauthors: Magdalena Rencova (Matej Bel University Banska Bystrica)

ERGODIC THEOREM FOR ERGODIC MAPPING ON **B-STRUCTURES**

LENKA LASOVA

In the contribution we will show extended ergodic theorem for B-structures with a state. Classic ergodic theorem is determined for ergodic mapping on Ω , where (Ω, S, P) is probability space and $\xi : \Omega \to R$ is integrable random variable. In our case is Ω replaced by B-structure B, which is defined as a system $(B, \oplus, \leq, 0_B, 1_B)$ such that:

(i) \oplus is a partial binary operation on *B*;

(ii) \leq is a partial ordering on B;

(iii) 0_B is the smallest, 1_B is the largest element in (B, \leq) .

Instead of integrable random variable $\xi : \Omega \to R$ we use integrable observable on B. For observable we will take a mapping $x : \mathcal{B}(R) \to B$, which satisfy the following statements:

(i) $x(R) = 1_B$, $x(\emptyset) = 0_B$; (ii) $A, B \in \mathcal{B}(R)$ and $A \cap B = \emptyset$ then $x(A \cup B) = \emptyset$ $x(A) \oplus x(B);$

(iii) if $A_n \in \mathcal{B}(R): A_n \nearrow A$ then $x(A_n) \nearrow x(A)$. It is integrable if exists $\int t dm_x(t)$, where $m_x = m \circ x$ with m as a state on B.

So the ergodic theorem is:

Let x be integrable observable on B-structure B with state m, for which the following holds: $\forall a \in B : m(\lambda(a)) = m(a) \text{ and } \lambda : B \to B \text{ is ergodic mapping.}$ Then the sequence $(y_n)_{n=1}^{\infty}$ defined by a formula: $y_n = \frac{1}{n} \sum_{i=0}^{n-1} \lambda^i \circ x - E(x)$ converges m-almost everywhere to 0.

References

- [1] K. Čunderlíková-Lendelová, B. Riečan: Probability on B-structures. In Fuzzy sets and systems accepted, 2007.
- T. Neubrunn, B. Riečan: Integral, measure and ordering. Dordrecht, Kluwer 1997. [2]
- [3] B. Riečan: Representation of probabilities on IFS events. Advances in Soft Computing, Soft Methodology and Random Information Systems. Springer, Berlin 2004, 234-246.

MATEJ BEL UNIVERSITY BANSKA BYSTRICA E-mail address: lasova@fpv.umb.sk