ManyVal '08 - Applications of Topological Dualities to Measure Theory in Algebraic Many-Valued Logic, May 19–21, 2008, University of Milan, Milan, Italy

A NOTION OF INDEPENDENCE FOR PROBABILITY **MV-ALGEBRAS**

IOANA LEUSTEAN

An appropriate definition for the notion of stochastically independent σ -subalgebras is an open problem mentioned by Riečan and Mundici in [7]. In the following, we propose a concept of *independent structures* for probability MV-algebras, generalizing the classical theory for probabilities defined on Boolean algebras [1,3].

In our approach, a probability MV-algebra is a pair (A, s) where A is an MValgebra and $s: A \to [0,1]$ is a (finitely additive) state. A σ -probability MV-algebra is a probability MV-algebra (A, s) such that A is σ -complete and s is a σ -continuous state. A state s is called *extreme* if it is also an MV-algebra homomorphism into the standard MV-algebra [0, 1].

For any two MV-algebras A and B, the tensor product $A \otimes_o B$ was defined in [2]. The main difference between $A \otimes_{\alpha} B$ and the MV-algebraic tensor product defined by Mundici in [6] is that we no more assume that the bilinear functions involved are bimorphisms. As a consequence, the tensor product $A \otimes_o B$ is uniquely defined, up to an isomorphism, by the following universal property: for any MV-algebra C and for any bilinear function $\beta : A \otimes_o B \to C$ such that

 $\beta(1,1) = 1$, there exists a unique MV-algebra homomorphism $f: A \otimes_o B \to C$

with the property that $f(a \otimes_o b) = \beta(a, b)$ for any $a \in A$ and $b \in B$.

Our first result is the following.

Theorem 1. If (A, s_A) and (B, s_B) are probability MV-algebras then there exists a unique extreme state $s_{A,B}: A \otimes_o B \to [0,1]$ such that $s_{A,B}(a \otimes_o b) =$ $s_A(a) \cdot s_B(b)$ (where \cdot is the real product) for all $a \in A, b \in B$. The above result suggets the following definition.

Definition 2. Let (A, s_A) , (B, s_B) and (T, s_T) be $(\sigma$ -probability) probability MV-algebras. We say that (A, s_A) and (B, s_B) are (T, s_T) -independent if there exists a bilinear function $\beta : A \times B \to T$ satisfying $s_T(\beta(a, b)) = s_A(a) \cdot s_B(b)$ for all $a \in A, b \in B$.

It is easy to see that if A and B are Boolean subalgebras of a Boolean algebra T and $P: T \to [0,1]$ is a boolean probability, then we get the usual concept: since $\beta(a,b) = a \wedge b$ is a bilinear map, A and B are called P-independent if $P(a \wedge b) =$ $P(a) \cdot P(b)$ for any $a \in A, b \in B$.

From Theorem 1 and Definition 2 we get the following result.

Theorem 4. For any two probability MV-algebras (A, s_A) and (B, s_B) there exists a probability MV-algebra (T, s_T) and a bilinear function $\beta_{A,B} : A \times B \to T$ such that the following proprieties hold:

(a) (A, s_A) and (B, s_B) are (T, s_T) -independent,

(b) s_T is an extreme state.

If $\beta_{A,B}: A \times B \to T$ is the bilinear map which gives the independence, then (c) $\beta_{A,B}(A \times B)$ generates T as an MV-algebra,

IOANA LEUSTEAN

(d) for any probability MV-algebra (C, m) and for any bilinear function $\gamma : A \times B \to C$ such that m is an extreme state and $m(\gamma(a, b)) = s_A(a) \cdot s_B(b)$ for any $a \in A$, $b \in B$, there exists a unique MV-algebra homomorphism $f : T \to C$ such that $mf = s_T$ and $f(\beta_{A,B}(a, b)) = \gamma(a, b)$ for any $a \in A, b \in B$.

We remark that the structure T is $A \otimes_o B$, s_T is the probability given by Theorem 1 and $\beta_{A,B}(a,b) = a \otimes_o b$ for any $a \in A$, $b \in B$. By (d), the structure $((T, s_T), \beta_{A,B})$ is uniquely defined up to an isomorphism. The above theorem can be generalized to arbitrary families of probability MV-algebras, following the classical theory [1,3].

In order to obtain a similar result for σ -probability MV-algebras, we need a preliminary construction: the (metric) completion of an MV-algebra with respect to a state. We refer to [4] and [1] for the similar construction in lattice ordered groups and Boolean algebras.

Definition 5. If (A, s) is a probability MV-algebra, we define $\rho_s(a, b) = s(d(a, b))$ for any $a, b \in A$. It follows that ρ_s is a pseudo-metric on A. Moreover, s and the MV-algebra operations are uniformly continuous w.r.t ρ_s . Let $(A^{\#}, \rho_s^{\#})$ be the pseudo-metric completion of (A, ρ_s) and $\Phi : A \to A^{\#}$ the natural map [5].

Proposition 6. If (A, s) is a probability MV-algebra and s is extreme, then the following properties hold:

(a) $A^{\#}$ is a σ -complete MV-algebra,

(b) there exists a σ -continuous state $s^{\#} : A^{\#} \to [0,1]$ such that $s^{\#}\Phi = s$.

Let (A, s_A) and (B, s_B) be σ -probability MV-algebras, $T = A \otimes_o B$ and s_T is $s_{A,B}$ from Theorem 1. If we define $T^{\#}$ and $s_T^{\#}$ as above, then $(T^{\#}, s_T^{\#})$ is a σ -probability MV-algebra by Proposition 6.

Theorem 7. Under the above hypothesis, the σ -probability MV-algebras (A, s_A) and (B, s_B) are $(T^{\#}, s_T^{\#})$ -independent.

As a consequence, for any two σ -probability MV-algebras (A, s_A) and (B, s_B) there exists a σ -probability MV-algebra (T, s_T) such that (A, s_A) and (B, s_B) are (T, s_T) -independent.

Acknowledgement This work was supported by a research fellowship of the Alexander von Humboldt Foundation.

References

- I. Cuculescu, O. Onicescu, Probability theory on Boolean algebras of events, Editura Academiei Republicii Socialiste Romania, 1976.
- [2] P. Flondor, I. Leuştean, Tensor products of MV-algebras, Soft Computing 7 (2003), 446-457.
- [3] D.H. Fremlin, *Measure Theory*, available from the author's site at the University of Sussex, 1995.
- [4] K.R. Goodearl, D.E. Handelman, Matric completions of partially ordered abelian groups, Indiana University Mathematics Journal 29 (1980), 861-895.
- [5] J.L. Kelly, General Topology. The university series in higher mathematics, D. Van Nostrand Company, 1955.
- [6] D. Mundici, Tensor products and the Loomis-Sikorski theorem for MV-algebras, Advances in Applied Mathematics 22 (1999), 227-248. [7]7leustean B. Riečan, D. Mundici Probability in MV-algebras, in: E. Pap (Editor), *Handbook of Measure Theory*, North-Holland, Amsterdam, 2002, 869-909.

 $\label{eq:technische University of Bucharest, Romania} Technische University of Bucharest, Romania E-mail address: ileustean@mathematik.tu-darmstadt.de$